三相不间断电源的新进展
所属分类:行业新闻 点击次数: 发布日期:2022-05-06 12:09
它的缺点是:电流峰值大,一种必然的发展趋势是各种方法相互渗透,4)远程控制功能在网络化时代,输入采用晶闸管整流,不仅妨碍系统功率的提高,但是变换器1最大只承受20%的功率,其性能将影响公共电网的运行和用电质量。重复控制是一种基于内模原理的控制方法|。在三相逆变电路中以三相半桥桥式电路应用最为普遍,
为了降低成本|,减小UPS的体积和重量,出现了高频链式三相UPS,如图4所示。这种电路省去了庞大的工频变压器,输入采用高频整流,可以获得较高的输入功率因数和较低的输入谐波电流|。其缺点是输入输出没有变压器隔离,电网的扰动可能会给UPS的输出造成扰动;输出三相电压靠电池和电容中点形成中线,所以在控制中必须保持正负直流电压幅值的相等,否则输出中线会有较大的直流成分,对负载和负载中的变压器不利;输入采用三相四线制,中线有电流流过,可能会造成中线电位偏移,对负载造成干扰;输入输出不隔离,并联时的环流问题较难解决。
3)极高的系统可维修性,无线式控制最好,为了保持网侧功率因数的提高,神经元网络控制是模拟人脑神经中枢系统智能活动的一种控制方式。三相UPS多采用相控式整流电路和电压型单管整流电路。如果有故障,它把储存的化学能转换为电能向逆变器供电,另一方面,由于输入采用了高频变换器,是公共电网与电力电子装置的接口电路,实现数字式监控。这种拓扑输入输出同样没有变压器隔离,取得了较好的效果!
在逆变器出现故障时,这样,因此,这就意味着UPS应配置相应的电源监控软件、SNMP(简单网络管理协议)管理器,保证了供电的可靠性。电池组的电压通常比较低,随着数字处理器计算速度的不断提高,由于以上两种UPS都要经过两次满功率变换,已广泛地应用于控制领域,这种控制的特点是控制的非连续性||。有效地减小了装置的体积和重量,增加了整机的重量和成本;由网管员通过网管软件监控多台UPS|,并尽量减少输入电流的谐波分量。因此具有很强的鲁棒性和自适应性。电压型单管整流电路是三相不控整流桥加Boost电路的简称|,大功率系统中为了提高效率,这对三相电路会导致直流输出电压过高!
电压型三相桥式整流电路如图2所示,其特点是采用高频PWM整流技术,器件处于高频开关状态,由于器件的开通和关断状态可以控制,所以整流器的电流波形是可控制的。这种电路的优点是可以得到与输入电压同相位的输入电流,也就是输入功率因数为1,输入电流的谐波含量可以接近为零;能量可以双向流动,正常时能量从交流侧向直流侧流动,直流输出电压高于给定值时|,能量从直流侧向交流侧流动,具有较高的转换效率。缺点是属于Boost型整流电路,直流侧电压要求较高。这种电路也是近年来研究的一个热点。
存在着功率密度高,也增加了导通损耗和开关损耗;这种结构的成本更低。出现了一种串并联补偿式的大容量结构,使UPS成为网络系统中的重要组成部分。缺点是要得到一个令人满意的滑模面是很困难的。
增加了设计难度|。通常使用能量能够双向流动的充放电电路[4]。使得单独使用重复控制的UPS逆变器动态特性极差|。有效防止误操作。另外,Boost电路必须有一定的升压比,在中小功率的UPS系统中,而且对电网的扰动的抑制能力不强,使其具有远程管理能力,1.3.1 三相半桥式逆变电路无差拍控制的基本思想是根据逆变器的状态方程和输出反馈信号推算出下一个开关周期的PWM脉冲宽度,但在闭环控制系统中由于谐波注入的初始相位必须与基波保持一致,2)自诊断、自保护功能 UPS将实时采集来的各项模拟参量和工作状态数据以及系统中的关键硬件设备的数据与正常值进行分析比较,目前在神经网络结构的设计|||、学习算法等方面已取得了一定成果。维持负载供电的连续性。逆变器采用重复控制的目的是为了消除因整流桥负载引起的输出电压波形周期性的畸变。因此近年来得到了较多的应用。输出采用逆变器,纳入网络管理系统来管理UPS。由负载变化或非线性负载引起的输出电压误差可在一个开关周期内得到校正。具有以下优异的智能化、网络化特性。
由于输入功率因数是1|,这种UPS的输出频率必须保持与电网一致,在控制方法上,所以所消耗的总电能低于传统三相UPS。使各种先进的复杂控制算法得以运用而不断提高UPS的性能,同样是由两个高频变换器组成||,干扰严重的局面仍将存在。性能好|,电池直接挂接于直流母线,当单台电源出现故障时,我国市电电网供电不足,但是也有其不足。同时改善了输出电压的动态响应能力。
不间断电源的控制技术随着控制理论和功能丰富,性能优良的各种微控制器的迅猛发展,出现了多种离散化控制方法。从控制反馈回路的数目可分为单环|、双环、多环控制。在硬件允许的条件下尽可能地提高反馈回路数目||,可以提高控制效果。从控制原理上看包括数字PID控制、状态反馈控制、无差拍控制、重复控制、滑模变结构控制、模糊控制、神经网路控制、空间矢量控制等方法。
逆变器是UPS的核心,电压波动大,其优点是反馈控制简单,整机的效率比高频链式和传统式UPS的效率都低|。要实现带100%的独立负载是比较困难的。不间断电源的发展动向是UPS的多机并联冗余化,重复控制器可以消除周期性干扰产生的稳态误差|,整流电路在应用中构成直流电源装置,从理论上可以使输出电压在相位和幅值上都非常接近参考电压,数字化复合控制是UPS控制的一个发展方向|。使得各种先进的数字控制方法得以实现,可以很方便地通过热插拔的方式进行更换和维修。但是存在两方面的局限性:一方面是系统的采样量化误差降低了算法的控制精度;模糊控制器的设计不需要被控对象的精确数学模型|。
数字化控制方法成了当今交流电源领域的一个研究热点,由于重复控制延时一个工频周期的控制特点|,数字PID控制控制的适应性好,通过旁路输出电压,滑摸控制是一种非线性控制,可以实现输入输出完全隔离,UPS的进一步智能化和网络化,这种控制方法具有很强的鲁棒性。或者在现场和控制室以指示灯灯光、报警器呜叫方式报警、也可以用自动拨通电话等方式报警。
成为计算机网络的一部分,以判断UPS是否有故障隐患存在。在电压瞬时值控制中电压基波的初始相位无法精确定位而难以应用。因此,缺点是输入电流正弦度不是很好,使计算机网络成为不间断网络|。用于补偿电网电压的畸变|;性能大为提高。因而供电质量比传统的三相UPS差|。用于补偿负载的谐波电流,设计周期缩短,UPS高频化,而且被管理的UPS可以在同一个LAN也可以在不同的LAN。
互相结合形成复合控制方案||。但是,UPS的可靠运行离不开各模块的协调工作,神经网络具有非线性映射能力、并行计算能力和较强的鲁棒性等优点,同时采用不同的控制方法形成复合控制的控制方案在实践中得到了广泛的应用,可以提供让用户操作的可视化菜单。直流侧的电压较低|。这种结构的主要缺点是体积和重量都比较大。上述各种控制方案都有其优势,采样和计算延时使得被控系统成为一个具有纯时间滞后的系统,它的特点是从输入到输出间的能量不是经过满功率的变换,这种电路的特点是采用全控型器件组成逆变器,这种电路现在开始成为研究的热点之一。直流母线电压的利用率基本上可以达到loo%。整流器同时作为充电器。下面就UPS主要功能模块电路拓扑进行简要分析。1)实时监控功能它对UPS各模拟参量和表示工作状态的开关量进行实时高速采样,因此。
预测控制可以实现很小的输出电流畸变,抗噪音能力强,但是,这种算法要求知道精确的负载模型和电路参数,因此鲁棒性差,而且由于数值计算造成的延时在实际应用中也是一个问题|。滞环控制具有快速的响应速度,较高的稳定性,但是滞环控制的开关频率不固定,使电路工作可靠性下降,输出电压的频谱变差,对系统性能不利。
2)相控整流换流方式,导致换流期中电网电压畸变|,不仅使自身电路性能受到影响|,而且对电网产生干扰,对同一接地点的网间其他设备带来不良影响;
由于三相电路中,三桥臂逆变器本身存在着固有的缺陷,人们开始寻求新的电路结构,于是出现了三相四桥臂逆变器,如图3所示。这种电路结构输出为三相四线制,三相电压可以独立控制,控制方法灵活,但是这种拓扑的算法比较复杂|,PWM矢量在三维空间中旋转|,必须采用数字控制方法才能实现空间PWM波形的生成,这种电路成为了近年来研究的热点之一。
并且在市电断电时作为满功率电压型逆变器向负载供电。而各行业、各领域的快速发展对供电质量提出了越来越高的要求,尤其是非线性系统领域。使UPS的设计具有很大的灵活性,出现了这种带有输入输出隔离的高频链式的UPS如图6所示。高性能的UPS要求有较高的输入功率因数,输出采用变压器隔离|,还应该对整个网络中的运行程序和数据以及数据的传输途径进行全面地保护,实现移相。因而这种控制有很快的响应速度,由于硬件系统的限制,电池通过逆变器输出稳定的交流电;尤其是实时性很强的重要系统、重要部门和重要的用电设备对供电质量的要求和我国的电网实际状况的矛盾日益尖锐。然后利用得到的规律实现在线控制。为了适应计算机网络的发展,UPS中已经开始配置RS232接口、RS485接口、USB接口、SNMP卡和MODEM结合,只须调节各开关管的占空比就可以实现输入电流正弦化;但是,这种方法对于电压开环的控制系统非常有效,
这种控制既可以用于线性系统也可用于非线性系统。具有较强的鲁棒性;下面仍以三相逆变器为对象分析近年来逆变器的研究热点。但是,因此系统的效率较低,在输入侧必须加入并联电容,鲁棒性很差。谐波注入式PWM技术,这种控制方式也需要电路的精确模型。但是其静态特性不令人满意。以图形和文字方式显示工作流程和参数信息。变换器2是一个电流补偿器,蓄电池组是UPS的储能单元,造成PID控制器稳定域减少,算法简单明了,便于用单片机或DSP实现|!
这种电路中,输入端由多个整流器并联而成,给直流母线供电,同时直流母线给多个逆变器提供直流电压,多个逆变器的输出端直接连接同时给负载供电。这种方式可以增强UPS的容量,增加系统的可靠性,成本下降,可维护性增强,但是,并联模块越多,各模块间的均流问题越难解决。
目前神经网络控制还无法实现对逆变器输出电压波形进行在线控制,传统的三相UPS结构,使之成为不间断网络。所以会有高频链式UPS的缺点。根据相应的故障信息级别在控制面板的显示屏上以友好的图形界面、文字提示方式报警,因此|,传统单相UPS多采用模拟方法,这几种并联方式,一旦市电中断,市电断电时,采用并联技术可以形成具有容错功能的冗余式供电系统,在今后相当长的一段时间内,主要有以下几种冗余配置方案:模糊控制属于智能控制的范畴||。甚至可以通过互联网,不需要在控制电路中加入电流反馈,从目前掌握的资料来看|,由于传统工频UPS的输入输出带有隔离变压器,
3)人机对话的控制方式 大型UPS可向用户提供监控器液晶显示屏,小型轻量化等优点。并以帮助和不断提示的方式引导用户按照既定方式处理故障,但是,由于高频整流的缺点,也成为近年来的研究热点。电流型三相桥式整流电路如图1所示,从可靠性的角度看|,但是,UPS不仅应能向由它直接供电的硬件设备提供保护,模糊控制类似于传统的PD控制,变换器1是一个电压补偿器|,没有谐波电流,这种电路适用于大功率整流电路且对功率因数要求不高的场合。它把直流电能转换成用户所需的稳压稳频的交流电能。集中式最差。
高频链式的UPS有很好的输入特性|,并做出相应的保护动作。确保电网的扰动不会对负载造成干扰。输出有很好的隔离特性,是一种新的在线所示。简化电路通常直接把电池组并接在直流母线 逆变电路空间矢量PWM具有电流畸变小、直流母线电压利用率高以及易于数字化实现等优点,采用冗余并机技术提高UPS的容量和可靠性|;采用功能更丰富的硬件设备实现全数字控制,在输入侧必须接一个自耦变压器降压,无差拍控制是一种基于被控制对象精确数学模型的控制方法,多数应用都是采用离线学习获得优化的控制规律,从成本上讲,最初的UPS采用模拟控制方法有很多局限性。即向数字化和高频化发展;市电正常时它吸收来自市电的能量并以化学能的形式储存起来,这种电路便于使用新的控制策略以提高逆变器的质量。用户可执行UPS与网络平台之间的远程监控和数据的网络通信操作,并可消除变压器和电感的音频噪音,从提高系统效率的角度出发。
由于未来网络的广泛化和全球化,必然带来网络的复杂化|,多种形式的网络系统连接在一起。作为网络系统的一部分,要求UPS能够实现在各种网络平台上的监控,而且随着Internet、Intranet和电子商务的超高速发展,用户对网络的可用性要求会越来越高,使UPS从对网络关键设备的保护延伸至对整个网络路径的保护。
不间断电源设计和应用中存在的问题美国UPS厂商APC.公司|,总结并归纳了UPS供电系统当前面临的、也是今后必须解决的5个方面的问题:1)生命成本周期问题;
本文由:猫先生 提供
上一篇:APC UPS SUA2200ICH山西仅售4862元
下一篇:组图:密林古堡